
SANDIA REPORT
SAND96-8557 ● UC-405
Unlimited Release
Printed August 1996

A CORBA-Based Manufacturing Environment

C. M. Pancerella, R. A. Whiteside, P. A. Klevgard

C.3

Issued by Sandia National Laboratories, operated for the United States
Department of Energy by Sandia Corporation.
NOTICE This report was prepared as an account of work sponsored by
an agency of the United States Government. Neither the United States
Government nor any agency thereof, nor any of their employees, nor any
of the contractors, subcontractors, or their employees, makes any war-
ranty, express or implied, or assumes any legal liability or responsibility
for the accuracy, completeness, or usefulness of any information,

apparatus, product, or process disclosed, or represents that its use
would not infringe privately owned rights. Reference herein to any
specific commercial product, process, or service by trade name,
trademark, manufacturer, or otherwise, does not necessarily constitute
or imply its endorsement, recommendation, or favoring by the United
States Government, any agency thereof or any of their contractors or
subcontractors. The views and opinions expressed herein do not
necessarily state or reflect those of the United States Government, any
agency thereof or any of their contractors or subcontractors.

This report has been reproduced from the best available copy.

Available to DOE and DOE contractors from:

Office of Scientific and Technical Information
P. O. BOX 62
Oak Ridge, TN 37831

Prices available from (61 5) 576-8401, FTS 626-8401

Available to the public from:

National Technical Information Service
U.S. Department of Commerce
5285 Port Royal Rd.
Springfield, VA 22161

5

SAND96-8557
Unlimited Release

Printed August 1996

UC-405

●

A CORBA-Based Manufacturing Environment

C. M. Pancerella and R. A. Whiteside
Distributed Systems Research Department

and
P. A. Klevgard

Information Based Manufacturing Systems Department
Sandia National Laboratories

Abstract

A CORBA-based distributed object software system was developed for Sandia’s Agile Manufacturing
Testbed (SAMT). This information architecture supports the goals of agile manufacturing rapid response
to changing requirements; small lot machining; reduction in both time and cost of the product realization
process; and integration within a heterogeneous, wide-area networked enterprise. Features of the resulting
software-controlled manufacturing environment are:

. Easy plug-and-play of manufacturing devices.

• Support for both automated and manual operations.

. Information flow both into and out of manufacturing devices.

● Dynamic task sequencer.

Each of the heterogeneous physical objects (lathe, milling machine, robot arm, etc.) has a
corresponding software object that supports a common IDL interface called IDevice. This interface provides
operations for material processing, material movement, status monitoring, and other administrative tasks.
CORBA objects allow for the encapsulation of a machine tool, its controller, and the network interface to
the controller.

Both manual and automated operations are. supported by the software system. If an IDcvice object
receives a request for a non-automated operation, it uses an associated Console object to affect the operation
by communications with a human machinist. A design goal of the Console object for a machine is to
provide an information-intensive environment for the machinist, rather than just the transmittal of
instructions to be carried out,

In addition to the flow of information into manufacturing devices (e.g., control and NC code), our
software architecture supports the easy extraction of data (e.g., sensor data or inspection reports) back out of
the machine and into the broader information processing environment.

The task sequencer object dynamically locates devices, accepts jobs, and dispatches tasks in the
manufacturing cell. A job script captures setup operations, material movement, and processing. Though
the task sequencer coordinates cell activities, many operations can be accomplished intelligently by the
devices. For example, all material transfer is performed as peer-to-peer object interaction, independent of
the supervisory control of the task sequencer.

Ongoing work involves integrating this Testbed management system with process planning, integrated
design, and inventory control systems.

3/4

Table of Contents

1.0

1.1
1.2
1.3
1.4
1.5
1.6

2.0

2.1
2.2

2.3
2.4
2.5

3.0

4.0

4.1
4.2
4.3

5.0

6.0

7.0

Introduction

Agile Manufacturing
Sandia Agile Manufacturing Testbed
SAMT Cell Management
Distributed Objects
Common Object Request Broker Architecture (CORBA)
OMG Interface Definition Language (IDL)

Interfaces for Manufacturing Devices

The IDevice Interface
The l13aseDev Interface
The IRunDev Interface
The IMovePart Interface
Automated and Manual Operation in Idevice

IDevice Implementations: Cdevice

Integration of Devices in a Manufacturing Cell

Cell Controller Graphical User Interface
Cell Sequencer
Persistent Objects for Device Setup Instructions and Cell Results

Conclusions and Future Work

Acknowledgments

References

7

7
8
10
11
12
13

15

16
17

18
20
21

22

24

25
26
29

29

31

31

5/6

.—

.

.

1. INTRODUCTION

The last decade has seen increasing awarenessof the eritica.1na-e of softw~e iII the m~*turing automation

prouxs [7]. Jn February 1996, the Communicationsof the ACM devoted an endre volume to the role of eOIIIPUG ~mm

in manufacturing [13]. An agile manufacturing facility imposes special requirem@s kch.dng SUpport for human
i

interaction with machining devices, plug-and-play of manufacturing devices with little, to no downtime in service, ease of

upgrading machine controllers, and information flow into and out of manufacturing devices. Our experience has shown

that a distributed computing environment is a particularly effective way of achieving these ends.

In the next sections we discuss agile manufacturing, introduce our agile manufacturing testbed, and give an overview

of CORBA, an industry standard for distributed object systems. This serves as background for a more detailed description

of our software design and implementation.

1.1 AGILE MANUFACTURING

Increasingcmnpetitiveness in manufacturing worldwide has spurred
+

permit rapid setup for smaller lot sizes. Agile manufacturing [10] must

efforts to increase production flexibfity and

support changes in praiuct mix, batch size,

m
manufacturing processes, customer requirements, and technology and at the same time provide cost-eilectiveness, reduced

cycle times, and high quality and accuracy. An agile manufacturing process spans the product realization life cycle

conception, design, analysis and simulation, planning (specifically, praess, assembly, and inspection planning),

fabrication, inspection, delivery, and possibly maintenance.

An implicationof an agile manufacturing environment is that the design and manufacturing facilities though perhaps

physically distributed, are networked and well-integrated witbin an enterprise. The enterprise is most often heterogeneous

with respect to computer platforms, operating systems, network capabdities, and custom and commercial software. Further,

it may b geographidy distributed across a wide area, possibly internationally. The information architecture itself mustbe

scaleable, interoperable, and recon&urable. Internet technology, electronic data exchange, and industry standards for

interoperabfity will be core to the i.nhstructure..

.

7

— —

1.2 SANDIA AGXLE MANUFACTURING TESTBED

cdl management, and fabricatim. tig de.s%m eI@I=S w ~puter-~ded d~igp (~) tooIs. simulation tools, and

analysis tools to design parts that meet tie customers’ reqtimm~. me pltig ph= ~clud= plfig for fabrication.

assembly and inspecticau fixturing, tooling, and analysis tools assist tie pr=ss mgin= during this stage. The cell

management activities, described in greater detail in the next sectiom include Aed*g, h-g, and job dispatching to

the shop floor. This qde is by no means sequential, but rather iterative for example. kcomplete designs may be planned

to guarantee that a part is manufacturable. Furthermore, information from planning and fabrication must be stored,

analyzed, and accessible to designers at a later time.

ResourceManagement

FEA

ModelingCAD
\

~- ‘ ----rhg ‘Even’bg’’ob’ratig
~2,.--<MaterialHandling

l~~Job Dispatching

Desimers -

-.

.

Figure 1. SAMT Product Realization Process.

The physical curnpommt in the SAMT is a networked manufacturing cell (F@re 2.) containing a conventional milling

machine (Cincinnati 4-axis mill), a milling machine (Haas 4-axis mill) equip~ with an open architecture controlled, a

lathe, q gas tungsten arc (GTA) welder, a coordinate measuring machine (Ch4M), various storage devices, and a Stliubli

.

robot which seticxx some of the manufiwturing and storage devices. Each of the manufacturing devices (lathe, milling

machines, CMM welder) has a cmmputer-somedmes shared-which has two functions:

● as a network umnecticm to the mae CXXWOllW.dewing prw~s ~d COIMO1COIU~dS tobe downloaded

and executed in au automated fashion+ and

-\
● asan operator umsole for electronic data to be delivered to the shop floor in support of manual operations, e.g.,

machine setup. or as a gwrdian interface [121.

The PC and Sun Spare 20 are used for cell management software mponmts. Fkme 2 shws the configuration of

manufacturing devices, computers, and networks in the manufacturing cell.

Figure 2. Agile Manufacturing Cdl ConfQuration.

One of the goals of the SAMT project is to explore a narrow, vertical slice of the product realizathm process. This

concept is illustrated in FQure 3. Throughout the product realization cycle (seen on the vertical axis of Figure 3), the

interactions will be studied and optimized as manufacturing processes and product lines vary.

.

9’

valves
reservoirs

5*
.dc.

A . ..

G?K-..-..:...-..F..-..-..-..:..:..:
—.. ..—..—..:..:...-..-.

SPECIFICATION

DESIGN

PLANNING

PRODUCTION

INSPECTION

—..:
..-

-- WELDING.
TURNING
MUNG

-\

PRODU~ LINE

Figure 3. Narrow, Vertical Slice of Product Realization Process.

Giventheprojectgoalsand the heterogeneous =puting resources, there me several demands placed on software in

the SAh4T. Specifically, the software must support a variety of platforms, operating systems, and progr amming languages.

The software must facilitate information flow through the product realization cycle and fiorn the manufacturing activities to

the designers and pr~s engineers. It must support rapid and easy customization, integration, and reconfi=wation.

Finally, the manufacturing cdl must be easily integrated into the extended enterprise such that manufacturing process data

(for example, inspection reports

process engineers in the future.

and on-machine measurements) can be stored in a database for use by designers and .

1.3 SAMT CELL MANAGEMENT

The focus of this paper is on software

manufxhming devices and the dispatching

development for the cell management activities, specifically the interfaces to

of jobs to devices. We define cell management in the SAMT as the software

components which are responsible for the following task.K

e

●

● :

●

entering process plans into the cell from the SAMT process planning node or external source

directing the development of a production plan from a process plan (i.e. producing a physical realization of a

process plan)

assigning production plans to be schdded

maintaining cell schedules, both long-term and short-term .

10

●

●

●

●

●

●

●

dispatching jobs to machines in the cell

coordination of manufacturing deviux in the cell

event-logging of all cell activities and storage of all cell data (on-machine inspection[61,W inspection, etc.)

gathering data and statistics on machining processes (tool utilization for example)

interface to planner for replanning of machining based on sensory input

interface to material handling system

-\

interfaceto inventory system.

An underlying requirement of the cell management software k to first automatetheflowofinformationto facilitateall

thoseprocesses which precede and follow the actual machining of a part. Where it makes sense, the cell management

software will also permit the automation of the machining itself. ‘

1.4 DISTRIBUTED OBJECTS

Distributed object technology [8]. allows computing systems to be integrated such that objects or components work

togetheracrossmachine and network boundaries. Examples of current distributed objector component technologies include
?

CORBA[4], 0LE[3], and 0penDoc[2].

.
A distributed object is not necessarily a complete application but rather a reusable, self-contained piece of software that

can be cumbined with other objects in a plug-and-play fashion to build distributed object systems. A distributed object can

execute eit.k on the same computer or on another networked computer with other objects. Thus a client object may make a

request of a server object and the operation proceeds unaffected by their respective locations. Following the principles of

object-oriented design, a distributed object has a well-defined inter$ace, descxibmg the data and functionality it exposes to

other objects.

There are four key principles in object-oiiented programming, abstraction, encapsulation, inheritance, and

polymorphism, and each plays an important role in our CORBA-based distributed manufacturing testbed software.

Abstradion is the process of refining away unimportant details of an object, so that only the appropriate attributes (data)

and behaviors (methods) remain. Encapsulation means that an object publishes a public interface (of data and methods)
1

that dek.neshow tier objects andapplications can in@-ut with it. The object’s private irnpltxnenbt,im is encapsulated or

.

hidden from the public view. Inheritance allows a new class to be built by extending the data and methods of a previm$lY

defined class. A child class (the derived class) can Mtwit or rave Am structures ~d fictions from a parent class (the

base class) and refine, customize, replace, or extend the simpler parent class. A chain of derived classes, each me defig’

its own variant of a method whose name is shared, permits pO@UIOrP~Cbeha~or: a C1mSob@t ~ automakally invoke

the correct variant of the shared method This feature makes cede modular and easy to mcdify.
-,

1.5 COMMON OBJECT REQUEST BROKER ARCHITECTURE (CORBA)

CORBA [4] is an industry rniddleware standard for building distributed, heterogeneous, object-miented applications.

CORJ3A is specfied by the Object Management Group (OMG), a non-profit consortium of computer hardware and software

vendors. At this time, CORBA provides the best technical solution for integrating our manufacturing testw it is robust,

heterogeneous, interoperable, multiplatform, and multivendor supported.

Figure 4 shows the COR13A reference model. The Object Request Broker (ORB) is the communication hub for all

objects in the system; it provides the basic object interaction capabilities necessary for components to communicate. When a

cliemt invokes a method on a remote object, the ORB is responsible for marshaling argumenta for the call, locating an object

server, physically transmitting the request, unmarshaling the arguments in a format required by the server, marshaling

return valuesorexceptions for the response, transmitting the response, and ummmhahg the response at the client end. -

------------- ,,. ,
.,, Application Objects ~~ Common Facilities ;

.. Object Services :... .. .

F~ure 4. CORBA Object ModeI.

.

12

●

✎

.

functionality to the ORB. CORBA object servks include, for example, standards for object life cycle. naming, per5i5~nW,

event notification transactions, and concurrency.

Common f~ilities provide a set of general-purpose application capabfities for use by object systems, including
-\

accessing databases, printing fdes, docume nt management. and electronic mail in a distributed system.

Finally, application objects in F= 4 arethe developed software which make use of the other three categories.

1.6 OMG INTERFACE DEFINITION LANGUAGE (IDL)

The OMG Jnterface Definition Language (fD.L)is used to define interfaces in CORBA. An IDL interface file describes

the data types+ and methds or operations that a server provides for an implementation of a given object. IDL is not a

progr amming language, but rather a language that describes only interfaces: there are no implementation-related constructs

in the language. The OMG does specify mappings from IDL to various progr amming languages including C, C+, and

Smalltallc. We will use IDL throughout this paper to show our interfaces to manufacturing devices, the task sequencer, and

otherCORBA objects in our system. Our particular manufacturing implementationshaveallbeenwrittenin(X+-,though

we have used other languages (TcI and Visual Basic, for example) to write client-only applications which use our CORBA

objects.

Though we will not give a detailed description of the OMG IDL language, it is fairly readable, and we present an

informal introduction to IDL by describing a simple interface that is used in our environment called INotify. As its

name su~ests, this interface is used to communicate notifications of events. For example, when some asynchronous process

is requested, success or failure maybe later reported back through an object INot i f y interface. The OMG IDL for our

INotify interfac8isasfo~ows:

interface INotify

.

{

readonly attribute

readonly attribute

readonly attribute

readonly attribute

oneway void

oneway void

string str;

boolean isEmpty;

long exceptCode;

string except String;

SetString (in string str);

SetExcept (in long code, in string str.);

13

Clearo;

Newo;

oneway void

INotify

};

INotifyk declaredas an interface in the fi.rst tieoftiefile. Ad=iption ~~e intetiace is provided in

subsequent lines, Wween the curly braces. ‘Ilk interface cmkts of four attrib~te~ followed by fw operations. Attributes +

correspond conceptually to state variables for the object. For example, tie fist attribute listed, st r, is declared & k of

typestring. ThuseachINotify objecthasa stringoftextcdkd str thatcanbequeried.The leadingreadonly

keywordinthedeclarationofstr indicatesthathsvalue cannot be directly modified. WMout this keyword, the value of

the attribute could be set as well as queried. Subsequent attribute declarations use some of the other basic types available in

IDL. These include long, short, boolean, and double. New types can also be defined as structures, arrays, and

sequences. Further, interfaces themselves represent types. ‘13ms,m attribute might be of type INotify,forexample.

ThefirstoftheoperationsdeclaredinINotify k SetString ().Thedeclarationindicatesthatthisacceptsan in

argument of type string. The InOutmode ofparametersinIDL operations must be one of in,out,orinout. The

returnvaluefromSetString k declaredtobeoftypevoid,butoperations can in general return values of any type. The

onewa y keyword in the declaration for set St ring indicates that use of the operation is non-bkding. Normally, -

invokingan operation causes the caller to wait (block) until the operationiscompleted.De&ring an

causes control toreturnimmediatelytothecallerwhiletheoperationisperformedasynchronously.

returnvalues.

operationoneway

Oneway may not

The next two operationsarefairlyself-descriptive,declaringreturntypesand requiredparameters.The New ()

operation,however,meritssomecomment.Thisoperationcreatesa new instanceofan INotify objectandreturnsau

objectreferenceof typeINotify as itsvalue.One may thenuse thisnew objectreferencetocalloperations:

SetString (),forexample.Thisabfitytouseobjectreferencesastypesforcallingargumentsorforreturnedvaluesisa

very powerful feature of CORBA.

A typical use of the INotify interface& toregisteraneventdescriptioninthedatamember str bymeansofthe

SetString () operaticm.For example, aftera successfi.devent,str may be setto“Done.”The booleanattribute

(isEmPty)indicateswhetheranythinghasbeenreportedbackandbyexaminingthis,onecandifferentiatebetweenno

“

14 ‘

report and the reporting of an empty string. There are also attributes in the nom~tion obj=ttoholdexception information

(a string and a long) in case some error needs to be reported. The SetExcept () operation is used to set these ValUW.

Note, however,thattheIDLdescribesonly an interfaceand that an implementation of lNotlfy is free to do whatever

it wants with its notifications. While the protocol reipires that stringsreportedtotieinti= WitiSet St ring () be
-\

made available fcr subsequent queries via the st r attribute, it may also do other ~gs when Set St ring () is callecL

These strings sent to the interface maybe written into a log ii.le, displayed in a dialog box, or written into a Web page: for

example. We have, @ fact, used INotify implementations that did each of these.

The OMG IDL allows the developer to define exceptions, and any attribute or operation may raise au exception. There

are also CORBAdefined exceptions as part of the standmd. We make extensive use of exception handling in our software,

but have omitted that feature in our IDL in this paper for simplicity.

2.

F

INTERFACES FOR MANUFACTURING DEVICES

We have used OMG IDL to speci&Jstandard software interfaces to the various manufacturing devices in the SAMT. A

goal of this effort is illustrated in Figure 5. At the bottom of the figure are the various machine tmls. On the PC assmiated

with each machine tool, we implementcontrollingsoftwarewhichprovidestheOMG IDL interface by manipulating the.

software interface, a client program ean control the corresponding machine. With this, then, we can write client software

illustrated in Figure 5 as the “CM Management Software Components” which controls the manufacturing activities in the

SAMT.

+

15

,

#
r i rSoftware

Interface
a

Machine Tool I

F~ure 5. Cell Management Software.

Thus, each uf the physical manufacturing objects in the agile manufacturing cell is controlled by a corresponding

CORBA software object. In spite of the apparentdifferencxxamong thevariousdevices(lathe,robot,storagetable,etc.),

theseobjectsallsupportthesamesoftwareinterfacean OMGIDL interfacecalledIDevice. Thissectionpresentsa ‘

descriptim of our IDevice interface.For brevity and for presentation clarity, the IDL shown will be abbreviated. The full
.

details can be found at http: //primetime. ca.sandia.gov/-raw/cell/index .htrnl

2.1 THE IDEVICE INTERFACE

IDevice interfacepresented below inherits from several interfaces and provides two functions, GetProgDB () and

GetConsole ().

interface IDevice : IBaseDev, IAllocDev, IRunDev, IMovePart

{

// Locate the program database for the device.
IProgDB GetProgDB ();

// Locate the operator console for the device.

IConsole GetConsole ();

};
I

,.

.

16

The first declaration line for interface IDevice illustrates the ~eri@u@ f=~e of OMG ~L. The declaration of

IDevice as an interface is followed by a cokm. mm a fist of *W interfam name.%stig witi lBaSeDev. This syntax

indicates that IDevi.ce inherits all of the attributes and operations defined in tie fisted interfacesin additionto those

explicitly listed in the ,IDevice body. I Device therefore inhtits Operatims and attributes from the following other

interfaces:
-\

● IBaseDev —Naming andoperationalstatusforthemachine.

● IAllocDev —. Controllingaccesstothemachine.

● IRunDev — Running processingactivitiesonthemachine(Le.,machiningapart).

● IMovePart — Transferring material into and out of a machine.

The IDL body for IDevice indicatesthattheGetProgDB () operationretUrnSavalueoftypeIProgDB. Thistype

correspondsto another IDL interface giving access to a database of manufacturing numeriwd control (NC) programs. Thus,

GetProgDB () returns as its value an object refimmce which can be used to access the database of NC programs available

for the device. Similarly, the GetConsole () function returns a reference to an IConsole ob~t. llk objectcanbe

*
used to access the operator’s console for the device, enabling communication with a human operator. A brief description of

thevariousbase interfaces of IDevice ispresentedbelow.
.

2.2 THE IBASEDEV INTERFACE

The IBaseDev interfacehasattributesthatgivethe“Class”ofthedevice(ie.,lathe,mill,etc.),auniqueID forthe

machine(e.g.,“I%ucOO1”),andaversionstringforthesoftwareobject.

interface IBaseDev

{

// Attributes giving Class, unique ID and

readonly attribute string DeviceClass;

readonly attribute string Device ID;

software version of this machim.

readonly attribute string VersionString;

*

// Status of the machine.

readonly attribute string Status;
~

// Advise the provided interface of all changes to the machine state.

// Return an “advise id”. This id is used later to cancel an advise.

17 ‘

long Advise(in INotify hnotify);

// Cancel advise for machine state.

boolean UnAdvise(in long adviseID);

};

AlsoprovidedisanreadonlystringattributecalIedStatus. ~shdm~whetiertiedevimisti ~emm$~~,

running,orWe, etc.Thusthestateofthemachinecanbemonitoredbypdhg theStatus attributeofthede@+ me “

behavior of his attribute illustrates the fact that a readonly attribute is not necessarily constanti the value of the status

attributecertainlychangesovertime,itisnothowever,directlymodifiablebyclientprograms.

Another way to monitor the status of a device is “through the Advise () operation. As indicated by the IDL, this

operationacceptsasan input argument a reference to an object of type INot i f y (described previously). A call to Advis@

requests that all subsequent changes in the value of the Status attribute be posted to the INot i fy objectwiththe

Set.string () operation.Thus,thecallingprogramk notifiedofallstatusehangwforthedevice.The implementation

ofthe.setstring ()operationcxndd,forexample,writeauentryintoalogfile,updatea labelinadialogdisplayingthe

status,ormodifythecontentsofanHThfL page.

2.3 THE IRUNDEV INTERFACE

The IRunDev interface,anotherof thebaseinterfacesof IDevice, providesoperationsforcontroWngthe.

processingactivitiesonadevice.

interface IRunDev

{

// Pause, resume, or abort the current activity.

boolean Pauseo;

boolean Resume ();

boolean Abort ();

. . . Other operations ...

// Run provided program. Return results as a string.

string RunThisProgram (in string jobName, in string pgm) ;

// Start provided program. Get results later from the “results” attribute.

boolean StartThisProgram (in string jobName, in string pgm,

~ in INotify hnotify) ;

Ii

18

l’his interface presents a number of operaticms for controlling processing operatias ~ tie device. ~ addition to a

pause, resume, and abort functionality, seveml IDL operations are available to execute n~eri~ ~trol (NC) programs on

a device. RunThisProgram () k suchanoperation,a-ptingtwotiputstr~gp~~eterstad re~~g a stringasits

value. The first input string is a name to assign to the job. This c= be queri~ by tier ClienfiastheJobName attribute

(not shown). The second input string parameter to RunThisProgram () k the textof tie NCprogram to be dow&xided

into the machine and executed. It is the obligation of the ID evice implementation to do whatever is necessary to achieve

this. In Section 2.5, we discuss how manual and automated tasks can both be implemented by RunThisProgram () in

IDevice.

When the requested processing activity is completed, RunThisProgram () returns a string as its value. Not a status

value as one might expect, the return value instead is the information output of the activity. For example, if the downloaded

program performs a machining operation, then the output of the operation is the physical part machined, and the return

value is a null string. However, the downloaded program maybe one that causes a lathe, for example, to position a touch

probe and make measurements of the part to test conformance to required tolerances while the part is still in the machine

[61. ~ @ -, tieprincipal output of the step is the mea.mement data, and the returned string value holds the prolx

data. This, then, is our mechanism for ensuring the easy extraction of process information out of manufacturing devices

and into the broader information processing environment the act of requesting an operation producing such data yields that

data as the return value of the reques~

A call to RunThisProgram () returnsonlywhen theoperationk complete,butoftenan asynchronousrequestk

moreconvenientsothatthecallerk notblockedduringprocessing.Thisk providedintheIRunDev interfamwiththe

StartThisProgram () operation.ThiscperationisverysimilartoRunThisProgram (), itsfirsttwo string

argumentsbeimgthesame.However, an extra input argument of type INotif y is required for StartThi-sProgram ().

Instead of returning the string output as the return value of the operation, Start ThisProgram () returns a boolean

SUCO%@ailvalueimmediately, indicating whether the operation was successfully initiated. The string output valuethat

would have been returned by RunThisProgram () isinsbdpostedtotheprovided INotify objectwhen the operation

is completed. In practice, we use this asynchronous mode of processing almost exclusively. although the synchronous
I

>

Operationiscxxxuionallyconvenient.Otheroperations in the IRunDev interface(notdetailedhere)providefcwreP~Y

_ thes~e pr~~~ ad for_ PrOgHUUSby ~e~ u~@ the PrWSIU da~b~ ~sociat ~ with ~ machine.

2.4 THE IMOVEPART INTERFACE
.

The IMovePart interfaceprovidesformaterialmovementbetw= devke.s.AnexCe@of this hterface follows:

interface IMovePart

{

// “Partner in the material exchange.

boolean SetPartner (in IMovePart dev) ;

// Enter/leave the “Access” state.

boolean Access (in boolean fAccess) ;

// Enter/leave the “Hold” state.

boolean Hold (in boolean fHold) ;

// Exchange the part.

boolean TakeFromPartnero ;

boolean GiveToPartner ();

... Other operations and attributes ...

};

The interfaceis organizedaroundtheeconcepw

.

. partner - Material movement is accomplished by a pair of devices which move material from one to the other.

Each device object in this pair knows (i.e. has an object reference to) the other as its “partner” in the exchange.

e access - For processing devices, this indicates whether the material is mmssible. For a machine with a dew, for

example, in the access state the door is open, while in the unaccess state, the door is closed. For a robot device,

access refers to whether the robot is currently reaching into its partner’s space.

. hold - Whether the device is currently gripping the part or material.

The firstthreemethodsin this interface provideoperationsforsettingthepartnerin theexchangg,and for

manipulating the Access and Hold statesofthedevice. To illustrate the utility of these operations, consider an example

in which a robot arm holds a part that is to be put into a currently empty lathe. The sequence of steps required to

accomplish this is presented in Figure 6. This illustrates how some controlling progrw, using the operations provided in
...

the IMbvePart interface, can effect material movement between devices.

.

20

.

!s>..
I

InitialStilte: Robot holding pSI’tto be put ~
into the currently empty, closed lathe. !...............
@n @e lathe door......i
Reaeh into lathe.
Both lathe and robot grip part
Robot releases part..............
Robot arm moves out.............
Lathe door closes. <
Transfer accomplished.

-,

Figure 6. Sequence of Operations to Transfer a Part from a Robot into a Lathe.

Although the preceding is certainly an ei%xtive transfer method, a more convenient means of material movement is

provided with the operations TakeFromPartner () and GiveToPartner (). Using one of these operations, the entire

sequeneeof access/hold operations is accomplished via direct device-tedeviee communications. Reconsider now the

scenarioin Figure 6. Sincn the robot device, for example, has an object reference to its partner in the exchange (set in a

previous call to the robot’s SetPartner operation), the robot object can manipulate the access and hold state of the lathe

directly. Thus a cd to the GiveToPartner () cperation on the rObOtresuhs in itS aS.$UdIIg responsibtity for the

● transfex, invoking operationson theLatheinterfkceas needed, and awaiting its replies. Thk kind of Peex-tqxxw

interaction is very natural and easy to implement with distributed objeets, and is a real strength of the CORBA technology.

.

2.5 AUTOMATED AND MANUAL OPERATIONS IN IDEVICE

In many cases, the operation of machines in the manufacturing cell is not completely automated. This maybe because

of limitations in the machine eontrolk.r, or just because we still rely on the expertise of human machinists in various

manukturing processes. We want our software architecture to support automation where it makes sense, but the removal

of humans from the manufacturing process is nota design goal of our system.

The architecture in place for the SAMT cell control SUpportsboth automated and manual activities. Consider, for

example, the IDL operation RunNa.rne@?rogr~ () (in interface IRunDev). This operation accepts as an input string the

name of the NC program to run in the manufaeturiug deviee, and it is the obligation of the IDevice object

impl~atatim to do whateva is necessary to& out the requested machtig operation. In the My autcmated case,

the suftware can carry mt the task by itself. It 100IcsUp the provided n~e in the progr~ da~b~ (using the IProgDB

21

interface)associated

machine. Some of

implementations.

IIItheC-W that the machine(forwhateverreason)does not mpport automa~ operation. we sti wmt it to be a part of =
-\

the information flow in the cell. Thus, even in this case we provide an IDevice objectforthemachinewhichimplements,

forexample,theRunNamedProgram () operation.The implementationof this operation k obligedtodo

whateverk necessarytocarryoutthetask.Inthiscase,tieimplementationuses~ ICo,nsole interfm(notpresented

here)toperformtheoperation.The IConsole interfaceprovidesop=ationsneededtow on a dialogwitha human

operator.The IDevice implementationusestheseoperationstorequestthattheOperatorrunthenamedNC prograrbcm

themachine,forexample.

3. IDEVICE IMPLEMENTATIONS: CDEVICE

One view ofourimplementationsof IDevi.ceobjectsk’giveninF@re 7. The “plug-in”jackatthetop

representstheIDevice interfaceitself.Thk k thenetwork-visibleinterfacethateachmanufacturingdeviceinthecellis ~

requiredtoimplement.

-.

IDevi ce kterface+ Network client

n Device independent

CDevice class

Figure ‘7.hnplementation Layers for IDevice.

\

22

.

?

.

Below this is a largely device-independent layer that is commonto dl of our lDevice implementations.While

dealing with issues like presenting the CORBA interface, threads. access-control. version strings. etc., the functionality of

this lap does not vary greatly for different manufacturing devices. However, the IDevice object is ultimately r-

to access the hardware level of a device, for example, to open a clmck or ex=ute a block of NC de. ne mechanisms for

~plishing this do vary greatly and the functionality required of this machine-dependent layer is captured &i our

standardized CDevice C+t class.

Note that IDevice implementations are not required to conform to thi$ CDevice standard. (holy IDevice is

required by the framework. Utilization of CDevi ce is an implementation convenience conforming to this CDevi ce

standad permits reuse of the device-independent layx of cur IDevice implementations, making it easier and faster to

integrate new manufacturing devices into our software environment.

As a C++ class, CDevice abstracts the functionality of any manufacturing resource mill, lathe, robot, storage system,

etc. CDevice class, never instantiated, is used as an abstract base class from which a local and more specialized class is

derived. Such a machi.ne-qxxific derived class then serves as the local implementation class of CDevice. For example, a

lathe might have its specific functionality implemented within a CLathe chiss which in turn derives from CDevice class.

Some menhr functions for CDevice, and hence its derived classes, have already been mentioned. A complete listing

follows:

virtual BOOL Init (...); virtual char *

virtual char ‘*RunThisProg (...); virtual char *

virtual BOOL Pause (...); virtual BOOL

virtual BOOL SoftAbort (...); virtual BOOL

virtual BOOL Access (...); virtual BOOL

virtual BOOL Hold(...); virtual BOOL

The implementationsclasses derived from CDevice varyconsiderably over

GetVersionString (...);

RunNamed2rog (...);

Resume (...);

EmergencyAbort (...);

UnAccess (...);

UnHold(...);

theshopfloor.A brief description is

offeredtoillustrate the variety of implementationmethodssupportedbytheCDeviceclass.

Part loading and automated transport operations depend upon a Stiubli RX 170 robot. The cDevice implementation

code$@s stringcummands overa seriallinetotheWubli controllerwhich runs disk-stored progrms to execute
\

$pdic functions.One ofthemachine tools serviced by this robot is a Baron 25 LeBlond lathe tilven by a Fanuc 1lT

\

23

,

.

controller.The lathe and its controller have ~n retied to achievefullyautomatedoperati~inclu~g theloading and

unloading of parts, the loading of NC code Mo themtrok memory, imd theretiievdofmeamment datafroma

turret-mounted touch probe. Implementation code for the Iatie md its a~O~CZ ac~a~ relay MN& digital 40 cards,

and a serial port for the transfer of NC code in and measurement data out. -.

-\

A coordinate measuring machine (Hehnel MicroStar Model 430-201) is also serviced by the robot. Implementation

code for this device sends command strings over a serial line to run specific programs stored by the controkr. Our gas

tungsten arc welder (Amet Advent-TPS) is not servjced by the robot. It is manually loaded and unloaded, and a human

operatmisalwayspresentduringweldingforsafetyreasons.However,the welding controllerhas TCP/lP socket

communication with a CORBA server object which sends weld schedules to the controller, and receives weld process data in

return. A similar scheme servim the open architecture controller [141 of the Haas 4-axis mill. Command strings and NC

code are send as socket packets, and data is returned in the same way. Finally, a Cincinnati Milacron 4-axis horizontal

milling machine is treated as a totally self-contained unit. It is manually operated and currently sends no data back. But a

near-by rack-mount PC fi.n-nishes the operator with an interactive screen to both present and receive information via the

IConsole object.Inthisway themachinisthaspotentialaccesstoawidevarietyofinformationsourcesthatrelatetothe.

partking machined.

-.

Inalloftheabovecases,theIDevice interfaeeandCDevice ck%ssemap.wdatetheimplementationdetailswhile

allowing fora common network interface to the machine tool. Hence, clients can access manufacturing devices in the

same manne~ this plug-and-play feature allows for easy integration with other softwrue components and user interfaee-s.

4. INTEGRATION OF DEVICES IN A MANUFACTURING CELL

As a research fkcility, SAMT has seen continual evolutionary change over a yxir and one-half, lmth in terms of

machine tools and their controlling software. I&vice objects were among the first software modules created for this

project. Our experien= has been that the IDevice de.s@n and implementation is sufficiently flexible and adaptative to

accommodateboth the addition of new machine tools and the evolution of more sophisticated cell management software.

I

24

.

4.1 CELL CONTROLLER GRAPHICAL USER INTERFACE

In the first phase of development of this system, IDeVice ~PleM@atioLIS were developed for all of the devices in the

SAMT at that time a lathe, a coordinate measuring machine, a Stliubli robot arm, and a cleaning station (as well as for

several storage tables). Thus we had plug-and-play objects ready to plug into somethingthatcoulddirectthem. At that fist
-\

milestcae, these components were emtrolled directlyby a relatively simpleclientprogram presentinga graphical user

interface (GUI) as illustrated in Figure 8.

Figure 8. IDevice Objects Plugged into a GUI.

The client GUI was developed using an extensiaa of the TclKk [9] progr amming language. The extension [1] to Tcl

allows the use of distributed CORBA objects. One of the great strengths of Tel/1% is the ease with which X-Windows based

user interfaces can be assembled, and this CORBA-based extension to Tc1was a very usefd tool.

The client GUI presented a simple eolkztion of buttons with labels like “Load Lathe”, “Machine Part”, “bad CMM”,

and “Measure Part”. In response to the “bad Lathe” button, for example, the client program invoked operations in the

variousIDevice objectstopickupa raw stock part from the storage table and put it into the lathe. For ‘Machine Part”,

the lathe was instructed to cut the blank into the de.siied shape, and so on. When “Measure Part” was selected, the

coordinate measuring machine probed the part, and sent back an inspection report which was presented to the user. This

could be saved into a file as desired.

25

.

Thus,inmilestone1ofourproject,theseplug-and-playIDevice objectswerepluggeddirectlyintoagap~~ ~

interface,thatpermittedoprationofthecdlbyptig butt~ stxIu~tidly.Inthenextprojectmilest~e,~= sme

IDev~Ce obj~ts Were pluggedinsteadintoaCellSequencercomponent,itselfaCORBA objectwithitsown IDL.

4.2 CELL SEQUENCER
>

-\

In the next phase of development of the manufacturing cell software, we developd a cell sequencer, or task sequencer.

As a CORBA object itself, the cell sequencer is also a client to the IDevice objects. ‘l& configuration can be seen in

Figure 9.

v Network Objects

Figure 9. Cell Sequencer Manipulating Several IDevice Objects.

The cellsequencerdynamicallyattachestodevices,hence,therek no needtore-compile

comes on-line or a machine tool disappears. The cell sequencer accepts jobs, dispatches tasks in

Lathe

Q

when a new machinetool

thecell,preventsdeadlock

situations, and guards against starvation of any single job. An abbreviated IDL for the sequencer, ICel lseq, is as follows:

interface ICellSeq

{

readonly attribute string CellName;

long AddJob (in string JobName, in string JobText, in string PartName,

in INotify WhenDone) ;
I void Pause (in long JobID) ;

void Resume (in long JobID) ;

void AbOrt (in long JobID) ;
s

26

.

.

boolean DeleteJob (in long JobID);

long Advise (in long JobID, in INotify inot);

boolean UnAdvise(in long AdviseID);

boolean AddDevice (in string DevName, in IDevice Dev);

boolean AddRobotDevice (in string DevName, in IDevice Dev);

boolean RemoveDevice (in string DevName);

IDevice QueryDevice (in strin9DeVName);
-\

IIterCellSeqJobs IterateJobs (in long JobID);

};

TheattributeCel lNamecontainsthe nameofthemauufacturing Cefl;inthefutnreseverrd cel.lseqtienc%rsdould be

coordinated by ashopfloor schedukr. Anewjob can beadded tothe sequencer with the AddJobo operation. This

o~ratim timtiekput stihgsasm~ak: JobName, aunique namewithinthecek, JobText, a’’script’’ of high-

level instructions to be accomplished in the cell; and PartName, which identifies the part to be manufactured. The

AddJob () operationalsotakesan INotify objectreferenceso thatthesequencer’sclientcan be notiiiedofjob

completion or error conditions encountered.The returnvalueoftheAddJob () operationk oftypelong,indicatingthe

assigned JobID givenby theSequencenthisJobID can thenbe usedto Pause (),Abort (),Resume (),or

.
Delete ()ajobinthesequencer,evenwhilethetaskdispatcher is operating. The task sequencer parses the JobText,

written in a simple scripting language develo@ for our manufacturing cell. The laneguage supports manufacturing setup
.

operations, material transfer ketween IDevice objects, and program execution at IDevi.ce objects. Though the cell

sequencer coordinates cell activities, many ogmations can be accomplished intelligently by the devices. For example, we

havementioned that all material transfers are performed as peer-tqeer object interactions, independent of the ‘supervisory

control of the task sequencer.

The Advise ()operationgivesthesequenceran INotify objectreferenceto call when the status uf a job changes.

~ a JobID of“0’k giventothesequencerintheAdvise () operation,theclientwillbenotifiedofall status changes for

all jobs. The return value of the Advi se () k anAdvise ID,whichcanthenbeusedtocancelsequencernotificationby

callingtheUnAdvise ()operationwiththecorrespondingAdvise ID.

There are four operations in Icellseq whi& MOW a client to m~pdate devi~ kUOWIIto me ~uencer:

i
AddDevice (),AddRobotDevice (),RemoveDevice (), and QueryDevice () . Notim that there me two diff&ent

27

1

operations to add a device to the =CIUCZNXXtie Ad~obotDeVice () is necess~ to distinguish robot and transport

vehicles from all other manufacturing and storage devi~ known by tie =quencer. me $equen~ must how if a device is

a transportdeviceinordertopreventcertaindeadleclcccnditioasinthecell.By including operations for dyn~~y

adding and removing devices in a dl sequenccx, tie sequenm will never have to be rmpiled or rwtarted when a new ,..

IDevice object is available on the network. h theory, this architecture supports a ce~ sequencer remotely dispitcmg

jobs to any IDevice object.

The finaloperation IterateJobs ()inICellSeq rehKXI$ankXakX,S@ thata Cfientcanusethisinterfaceto

iterateoverjobsina sequencer.Ifspecificnon-zeroJobID isgiventoIterateJobs,theiteratorwilllxinitializedtopoint

totheidentifiedjob.The IDL for I It erCellSeqJobs is this:

interface IIterCell SeqJobs

{

boolean Reset ();

long Next ();

readonly attribute string JobName;

readonly attribute string JobText;

readonly attribute long CurrentLineOfJobText;

readonly attribute string LastError;

readonly attribute long LastErrorCode;

readonly attribute string JobStatus;

};

By using the IIterCellSeqJobs interface,currentstatusinformationaboutoneoralljobscanbeeasilyacquired.

The current task dispatcherisquitesimple, with no scheduling optimization criteria. This task dispatcher will be used

by a smart scheduling object (ICellSched). This elaborate scheduler will call ICelKeq to dispatch jobs ona it has

optimized on “time”, “cost”, and *’priority” values on jobs. We expect the current interface and implementation of

ICellSeq to remain as described above. Allowing for this type of growth is a strength of using this distributed object

amhitecture.

28

4.3 PERSISTENT OBJECTS FOR DEVICE SET~INSTRUCTIONS A~CELLRESULTS

In the configuration in Figure 9, a manufacturingproductionsxipt is an kput to theAddJob operationinthecell

sequencer,whilethecellresults are an output of this operation, written to an INot if y object. Some of tie

manufacturing steps in the production script will be setup operations, e.g.. tootig ad fixturbg, possibly extracted from a
-\

previous process plan or database. The cell results will likely be stored in a database for future analysis or access. We

have developed persistent CORBA objects to hold the device setup instructions (IDeVSetup) and the cell re.suha

(ICellResults) . Hence, we pass CORBA object referemxs for setup information and cell results storage to the cell

sequencer. These objects are stored in a database, which is located on a networked computer. The IDL for these objects is

available on-line at http: / /primet ime. ca. sandia. gov/-raw/cell /index. html.

5. CONCLUSIONS AND FUTURE WORK

We have presented a distributed object CORJ3A framework for management of a manufacturing cell. This architecture

is robust, allowing for easy addition, deletion, and updating of manufacturing devims in a plug-and-play manner. Further,

this architecture supports not only manufacturing automation, but human integration by providing console interfaces to

manufacturing devices. We have shown several different implementations of our CORBA IDevice interface and the

corresponding C+t class, CDevice. Our well-defined common interfaces hide implementation details, including the

machine Umtroller and the communications to the machine tool, from the cell management software. The IDevi-ce

interface rdso supports automated and manual machine operations and/or material transport. The CDevi ce class Wows us

to encapsulate a wide range of machining, storage, or transport devices.

We have defined and implemented a CORBA interface to a cell sequencer. The cell sequencer manipulates IDevice

objects and coordinates manufacturing jobs on a shop floor. Our software development and integration strategy, descriked in

detail in Section 4, allow for the incorporation of more advmd cell management components in the fume. CORBA

enhan~ the system integration because it is an industry-standard for interoperable, distributed objects across

heterogeneous hardware and software platforms. In time, as commercial software vendors provide CORBA interfaces to

varkm+ software components,it will be easy to integrate them with our developed manufacturing software. The resulting

architecture is scaleable across a wide-area enterprise.

29/30

Our future cell software development includes adtig mpport fm a more injmnati~n-intensive tivironment on the

shop floor. Intelligent cdl management software cmqmnmts mwt have access to desi~ md plhg information in order

to make well-informed decisions about scheduling jobs ad m~ag~g manufactig devices. At the same time, design,

planning, and fabrication information should available to human operators at machines. To do this we prw~

implementing an electronic traveler as collection of persistent CO~A object.$that interface to databases and prod&t data

management (PDM) systems at Sandia. A traveler is the collection of routing forms, part drawings, production scripts and

other fabrication information that “travels” with the part as it is bekg fabricated. ~s electronic traveler will replace the

paper travelers of the past and allow on-line access by both designws and manufacture, possibly at remote sites. We are

also integrating our manufacturing cell with a part inventory system for tooling and iixtures, and a state-of-the-art process

planning environment beii developed in the SAMT.

Finally, we are currently evaluatingtheCORBA IDL manufacturing ilamework defined by Sematech [5]. A key

concern we have is the degree to which Sematech architecture supports information-drhen manufacturing with human

integration.

6. ACKNOWLEDGMENTS

The authors express gratitude to a number of people-at Sandia National Laboratories. Jm Costa is a program manager
for this work. Hisup Park is the project lead of the SAMT project and the author of the vugraphs that became F@.wes 1 and
3. Robert Hillaire (who provided us with Figure 2), Jon Baldwin, and Tony DeSousa are responsible for various
implementations of CDevi ce.

7. REFERENCES

1. G. Ahnasi, Suvaiala, A., et. al., ‘Tclllii A TCL Interface to the orb~ Dynamic Invocation Interface”, Concurrent
Engineering Research Gmter, West Virginia University, Morgantown, West Virginia, 1994.

2. Apple Computer, Inc., OpenDoc Programmer’s Guide for the Mac OS, Addison-Wesley Publishing Ccanpany,
Reading, Massachusetts, 1995.

3. K. Brockschmidt, Inside OLE 2, Second Edition, Microsoft Press, Redmond, Washington, 1995.

4. The Common Object Request Broker: Architecture and Specification, OMG Technical Document IWC/96-03-04,
Object Management Group, Framingham, Massachusetts, July 1995.

5. “Computer Integrated Manufacturing (CM) Application Framework”, Specification 1.1, Sematech Technology
Transfer 93061697D-ENG, August 1994.

6. A. J. Hazelton, “On-Machine Acceptance of Machined Component.#’, Proceedings of the loth Annual Meeting of the

American SocieQ of Preciswn Engineering, Austin, Texas, October 1995.

31

7. A. W. T. Jones, and McLean, C. R.. “A Ce~ ContXO1System for tie ~’s Proceedings of the 1984 ASME
International Computers in Engineering Conference, August 1984.

8. R orfdi, Harkey, D., and Edwards, J.. The Essential Distributed Objects Survival Guide. Jo~ Wiiey and Sons,
Inc., New York,New York,1996.

9. 0usterhou4J. K., Tcl and the Tk Toolkit, Addison-Wesleyfibk~g Compmy.Read@. Massachusetts,1994.

10. R Nagel, and Dove, R, editors, 21st Century Manufacturing Enterprise Strategy, An Industry-Led View, ~~ ‘
Institute, Lehigh University, Bethlehem, Pennsylvania% 1991. -,

11. H. Park, “Sandia Agile Manufacturing Testbed”, Sandia National Laboratories, Livermore, California, January
1996.

12. M. K. Senehi, Barkme~r, E., et. al., “Manufacturing Systems Integration Initial Archkture Document”, NISTIR
914682, National Institute of Standards and Technology, Gaithersburg, Maryland, September 1991.

13. M. J. Wozny, and Regli, W. C., guest editors, “Computer Science in Manufacturing”, Communications of the ACM,
Vol. 39, No. 2, February1996.

14. P. K. Wright, “Principles of Open-Architecture Manufacturing”, Engineering Systems Research Center, ESRC 94-
26, University of California at Berkeley, October 1994.

.

..

32

UNLIMITED RELEASE

INITIAL DISTRIBUTION:

0521 G. L. Laughlin, 1567
0342 K. W. Mahin, 1807
9405 D. Lindner, 1809
0505 D. L. Eilers, 2304
0661 G. E. Rivord, 4012
0863 M. A. Tebo, 4012
0807 R. Detry, 4918
9001 T. O. Hunter, 8000

Attn: J. B. Wright, 2200
E. E. Ives, 5200
M. E. John, 8100
L. A. West, 8200
W. J. McLean, 8300
R. C. Wayne, 8400
P. N. Smith, 8500
T. M. Dyer, 8700
P. E. Brewer, 8800

9214 E. Friedman-Hill, 8117
9420 L. A. West, 8200
9405 R. E. Stoltz, 8202
9430 L. N. Tallerico, 8204
9405 M. Rogers, 8220
9133 J. M. Baldwin, 8220

. 9405 T. De Sousa, 8220
9405 B. V. Hess, 8220
9405 R. G. Hillaire, 8220

* 9101 P. A. Klevgard, 8220 (3)
9405 S. Leonard, 8220
9405 S. Marburger, 8220
9405 R. Mariano, 8220
9405 H. Park, 8220
9405 J. Schwegel, 8220
9405 J. R. Smith, 8220
9405 T. R. Walker, 8220
9430 A. J. West, 8240
9408 J. O’Connor, 8414
9003 D. L. Crawford, 8900
9011 R. E. Palmer, 8901
9011 P. W. Dean, 8910
9011 W. T. Strayer, 8910
9012 J. E. Costa, 8920 (2)
0806 R. L. Davis, 8920
9011 J. A. Friesen, 8920
9012 J. N. Jortner, 8920
9012 C. M. Pancerella, 8920 (6)
9012 R. A. Whiteside, 8920 (3)
1003 R. W. Harrigan, 9602
1010 M. E. Olson, 9622
1004 M. J. Griesmeyer, 9661
1006 P. Garcia, 9671

33

0863 T. M. Stephens, 14307
0863 N. A. Lapetina, 14309
0320A K. Thomas, KCP (2)
0320A G. Brace, KCP (2)
9021 Technical Communications Department, 8815, for OSTI (10)
9021 Technical Communications Department, 8815~echnical Library, MS 0899, 13414
0899 Technical Library, 13414 (4)
9018 Central Technical Files, 8940 (3)

34

